Population Vectors Can Provide Near Optimal Integration of Information

Articles
Authors

Josue Orellana, Jordan Rodu, Robert E. Kass

Published

29 August 2017

Publication details

Neural Computation 29(8):2021-2029

Links

 

Much attention has been paid to the question of how Bayesian integration of information could be implemented by a simple neural mechanism. We show that population vectors based on point-process inputs combine evidence in a form that closely resembles Bayesian inference, with each input spike carrying information about the tuning of the input neuron. We also show that population vectors can combine information relatively accurately in the presence of noisy synaptic encoding of tuning curves.